
Understanding and implementing
privacy by design in software
development
March 2021

Today, countries and organisations fully recognise the ever-increasing value attached to personal data and the equally high risks associated with it. Software, be it online, mobile,
desktop, or even IoT-based, has emerged as the most powerful and scalable way to personalise services and understand customer needs and, in turn, to gather vast amounts of
user data.

The growing demand to monetise information and derive increasingly new benefits from it have led to concerns around unethical data collection and usage. Consequently,
this landscape of extensive data collection and preservation has created an urgent need for preventing misuse of personal information. While companies need not stop data
collection/creation altogether, they have to find a way to balance user privacy and business interests.

The concept of privacy by design (PbD) can help organisations strike the right balance.

2 | PwC | Understanding and implementing privacy by design in software development

What is PbD?

PbD is a proactive measure that aims to embed the
concept of privacy in all data-processing activities
right from the outset. Thus, it is not a reactive
measure or countermeasure taken in response to a
breach. Unlike privacy by default, PbD is not limited
to publicly accessible software but also extends to
internal IT systems, business practices and network
elements. PbD requires that privacy be firmly
established across the requirement assessment,
design and operations of an organisation’s tech
culture and not limited to a product or software.

Seven principles of PbD
While the origins of the concept of privacy can be
traced back to the 1970s (owing to the onset of mass
surveillance), its foundation principles started to take
shape in the 1990s and the late 2000s.1 With the
EU including data protection by design and default
in its General Data Protection Regulation (GDPR)
guidelines, PbD has become an important part of
discussions on data privacy since 2012.

The seven PbD principles2,3 are as follows:

1.	Proactive and preventive approach to privacy risks
–privacy is no longer a remedial measure.

2.	Systems and procedures to be set to protect
privacy of end users, by default.

3.	Privacy should be fully integrated into the IT
architecture and practices, making it a key
component in the functionality of any system.

4.	No trade-offs between privacy and functionalities.

5.	Data should be protected and secure throughout
its life cycle – from collection to deletion.

6.	Technology and practices must be transparent
and open to auditing/verification by relevant
stakeholders.

7.	A ‘user-first and user-friendly’ approach to
enforce utmost privacy protection and notification
standards.

The burning question – how does one
go about incorporating these principles
in software development?
PbD takes a design thinking approach to managing
individual control over personal data flow,
incorporating it into systems and technologies by
default. People generally treat this as an ‘engineering
issue’, while we believe it to be a strategy that needs
to be implemented at the grass-roots level.

3 | PwC | Understanding and implementing privacy by design in software development

1.	 https://www.scandinavianlaw.se/pdf:/47-18.pdf Bennett, Colin J. (1992). Regulating privacy: Data protection and public policy in Europe and the United
States. Ithaca: Cornell University Press

2.	 https://www.dzlp.mk/sites/default/files/doc_id_2.1.4.3.pdf
3	 https://www.aepd.es/sites/default/files/2019-12/guia-privacidad-desde-diseno_en.pdf

What, then, is a suitable strategy for
an organisation to implement PbD-
compliant software?

During the initial stages of every software
development life cycle (SDLC), development
teams should begin by defining and constraining
requirements for personal data in view of the
long-term strategic data objectives. The following
guidelines can be useful for any scoping activity:

1.	 Data minimisation and collection with a
purpose: When it comes to personal data, there
should be a ‘less is more’ approach. The scoping
team should clearly identify and define the data
elements that would be gathered through the
product. Each user story or epic pertaining to
data collection should describe two key aspects:
(a) the purpose behind the collection (b) use of
the data collected. These aspects will ensure
that developers and architects understand and
appreciate the sensitivity and purpose of the
information collected from users and enable them
to incorporate the relevant safety measures in
subsequent development phases.

2.	 User consent: Each step of data collection
within the product should be preceded by a
clear notification to the user and, in many cases,
a clear option for the user to provide her/his
consent. Such controls should be planned and
embedded in tasks and sub-tasks for each epic.
Also, as dictated by the foundation principles,
this option of user consent should be set by
default.

Incorporate the seven principles during the
scoping and planning phases01

3.	 Individual choice: Project managers and
architects should build user stories, solution
architecture, user interface (UI) and other
elements of the product around the tacit notion
that individuals have the right to request for
deletion or updating of their data at any stage.

4 | PwC | Understanding and implementing privacy by design in software development

Data collected by software is not only varied and
expansive in nature, but may also have a very long
life cycle. Therefore, the core principles of PbD
should apply at each juncture of data generation,
transformation and usage.

Secure data throughout its life cycle

a.	 Data generation: In most cases, a software’s
data is generated by users via UIs or interactions.
Such models of data ingress should be
thoroughly guarded. When entering data, the user
should be able to toggle between showing and
hiding their personal information on the UI itself,
especially to prevent shoulder hacking. While
such controls are typically used for sensitive
information like passwords, they can easily be
extended to other data points.

b.	 Data in transit: While the transport protocol
nowadays is fairly secure against man-in-the-
middle attacks and sniffers, an additional layer
of encryption for data packets containing user
information is a good privacy measure to adopt.
Information such as phone numbers and email
IDs typically navigate between the UI and the
back-end server in the form of free-text strings.
Encoding such elements can ensure enhanced
privacy protection control.

Protect data throughout its life cycle and incorporate
effective controls while developing the solution02

c.	 Data at rest: Traditionally, data stored in a
system has been the most vulnerable to privacy
breaches, and naturally so – owing to the sheer
number of personnel that have access to it. To
minimise the risk of privacy breaches, while
designing a software application, the solution
architects should mechanise the encryption-
at-rest protocols for both user data as well as
documents. Using a simple symmetric encryption
method, data can be encrypted while being
stored, and decrypted when being readied for
use. The encryption keys can be stored in secure
locations away from the hosting environment
itself.

d.	 Data marked for deletion: With the emergence
of the principles of ‘right to vanish’ and ‘right to
be forgotten’, any user may demand to have her/
his information deleted from the software. This
includes deletion or ‘blanking’ application logs,
transaction records, chat logs and other data
buckets containing titbits of user information.
The ‘forget’ operation should be programmed
into the architecture of the software and every
such instance should be closely monitored
by a specific set of individuals, including the
data privacy/protection officer (DPO) of the
organisation. Each request for deletion should be
logged, signed off on, monitored and addressed
in a secure and stipulated fashion.

5 | PwC | Understanding and implementing privacy by design in software development

Validate bulk or document uploads

It is a common practice to embed relevant controls
in the UI elements to detect, process and validate
user inputs. But development teams, at times, fail to
perform similar checks during bulk upload operations.
Due to the asynchronous nature of such operations
and the need to minimise the wait time for the user,
developers may choose a lower degree of validation
during document uploads. Data uploaded through
documents should undergo the same amount of
scrutiny and validation as that uploaded through the
UI, and appropriate measures should be embedded
while developing the software.

Implement ethical data usage policies

Every organisation that processes or chooses to
process user information should chalk out a detailed
ethical data usage policy. The policy can have two
subdivisions:

1.	 for public or customer viewing – ensuring
transparency around the data usage policy

2.	 for staff – to be complied with by all staff working
on a product or software.

The policy should contain guiding principles for
responsible data handling, transparency, fairness
and safeguarding user privacy. In addition, the staff
version may contain penalty clauses, zero tolerance
and permitted legal action in case of privacy
breaches.

Further, staff working in software development should
be trained and certified on data ethics and privacy
periodically and at the time of induction into the
organisation.

Check the network elements, audit trails
and trackers

Tertiary data and metadata form a major component
of the information collected by software. While such
data cannot be considered as private data directly,
when linked with additional information, it can
potentially disclose a person’s identity. Therefore,
while developing software, architects and developers
should recognise the need and risks associated
with collection of IP addresses, location and other
metadata.

The following considerations must be taken into
account while collecting metadata:

1.	 Session-oriented or transient browser-based
data: Certain metadata can be stored in the
form of cookies or session variables to make it
available only to the browser or user session.
Even if the metadata is stored at the back end,
once the user is logged out (or over a period
of time), the cookie or session variable can be
removed.

2.	 Metadata separation: If metadata is required for
tracking and analytics purposes, it can be stored
in a separate location from the user/application
data. This approach will introduce a firewall
between the two datasets, making it difficult for
any intruder/aggressor to establish linkages.

Include the DPO in the initial approval
hierarchy

Typically, organisations and development teams
seek approval and advice from the DPO towards
the end of a product’s SDLC. And such approvals
are, in most cases, nominal or formal. But in order to
comply with PbD, it is imperative for product owners
to seek advice and guidance from the DPO during the
planning and initial development phases. While each
story or epic needn’t be authorised by the officer, the
architecture, security measures and overall design of
the software need to be vetted and approved by the
DPO.

6 | PwC | Understanding and implementing privacy by design in software development

03

Involuntary data collection

Often, software tends to collect information that
either (a) it is not meant to collect, or (b) that is in
addition to the information that it is tasked to collect
from the user. For instance, while a simple chatbot
generally tries to help out a user based on the limited
information provided, it doesn’t restrict a user from
entering her/his own personal information in the chat
window. If a user chooses to enter a phone number
or has understood a question wrongly and enters
unsolicited information (unintentionally or mistakenly),
the chatbot would store the same in its database.

Such unforeseen scenarios are too many to provision
for during the development phase. Hence, it is wise to
perform regular and periodic checks on the data sinks
of the software. These checks can help in:

1.	 detecting and formulating deterrents to
unwarranted data ingestion

2.	 redefining effective input controls, such as
changing a particular question to achieve a more
accurate and suitable response from the user.

Data lineage and usage reports

During the life cycle of software, data requirements
may change periodically or eventually. Certain new
data elements may be added, while a few old ones
may go unused or become obsolete in day-to-day

operations. Periodic audits of the data dictionary vis-
à-vis intent of use may yield data points that are not
critical to the functioning of the application, and can
therefore be eliminated from the collection process.
This methodology conforms to the less is more
approach of data collection to ensure privacy.

Controller-processor architecture

Certain software, especially that internal to
organisations, forms a part of an elaborate data grid
or lake. Several applications or ‘downstream’ systems
may rely on or use the data provided to them. In such
cases, software that contains private information
should adopt a strict data processing ‘contract’
with consumer mechanisms. There should be a
mechanism, similar to that of a controller-processor
contract between two parties, set in place to seek
and receive access to information stored in sensitive
systems. A data processing template and periodic
data audit guidelines for the processor should be
defined before providing access to the controller’s
data.

Calls from application programming interfaces (APIs)
and microservices should be validated and authorised
before addressing them, and the data exchanged
should be restricted to the attributes set forth in the
data processing contracts between the two systems.

Monitor the product’s
data sinks

7 | PwC | Understanding and implementing privacy by design in software development

04 Duly scrutinise change requests, versions and
modifications

Each change request should go through the same
rigorous mechanism outlined in the aforementioned
sections. User stories and epics should contain
clearly defined new data parameters (if any) and their
usage. Storage and protection policies of additional
data should be discussed, documented and
authorised by relevant stakeholders. Changes in UI
should comply with the seven principles. Further, all
major change requests that entail feature modification
or data collection should be approved by the DPO.

8 | PwC | Understanding and implementing privacy by design in software development

Inform users about data collected and
obtain consent

Before collecting information, inform users about the
following aspects:

•	 why or for what purpose their data is being
collected

•	 how their data is being stored and protected

•	 for how long the organisation or software will store
the data

•	 advice on what type of data should be entered in
the user input fields, mitigating unsolicited data
collection

•	 user consent to be acquired before form
submission or page loads.

These pointers can be implemented at the form level
(before loading or submitting) and on a separate
screen (form or page) prior to the data collection
template.

Create a user-friendly privacy policy and
not a long-drawn legal document

Explaining privacy policies, measures and consent
or notifying the end user about them should not
warrant a ‘wall of text’, nor should the user be
bombarded with legal/technical jargon. As dictated
by the seven principles, the privacy policy and related
documentation should be designed in a user-centric
fashion.

Provide privacy control
back to users05

The UI for the policy should:

•	 be clean

•	 be broken down into sections

•	 contain images and call-outs to explain the policy
visually to users

•	 not skimp on the content itself.

Update users about changes to the policy

Data privacy laws and norms are constantly changing,
and hence, a software application’s privacy policy
would require additional clauses or modifications.
Such changes can be compiled in an email or a
document and be sent to relevant users. This need
not be a manual process, and a mechanism within the
software can be used to enable such communication
to the user. Further, push notifications can be used to
alert users about policy changes and redirect them to
a document or webpage containing the modifications.

Each change to the privacy policy should be
followed by seeking of consent from the user, before
submission of data or transacting with the software.

9 | PwC | Understanding and implementing privacy by design in software development

06 Run analytics to identify
data leeches

Product owners should monitor the data pipeline
(data at rest and in transit) to identify programs,
trackers and bots that are ‘feeding’ on the information
contained in the software. While encryption can
protect the data from being misused, periodically
analysing data traffic can serve as an added layer of
privacy protection.

10 | PwC | Understanding and implementing privacy by design in software development

Decommissioning and migration protocols should be
defined within the software life cycle to streamline
the ‘sundowning’ process of a software application
or version. From a data privacy perspective, this is a
critical juncture and should comprise the following:

•	 A secure methodology should be defined within
the software to migrate, retain or remove user
data. The data should be packaged for transport
or deletion and should be encrypted. The
migration/deletion process should be monitored
by critical stakeholders and relevant evidence
(logs, documentation and screenshots) should
be gathered to catalogue the various steps of the
procedure for future reference/audits.

•	 Users should be notified of the process, especially
during decommissioning; and they should be
reminded of the organisation’s data retention
policies. They may then choose to have their
information deleted from the software.

•	 The data retention policy should also comply with
the PbD principles and minimise the amount of
data collected to the extent possible, maintaining
a balance between user privacy and policies.

•	 While shutting down or reusing the hosting
infrastructure, adequate data erasing measures
should be employed to preclude information
extraction using ‘data carving’.

•	 The DPO should be notified of the process and
should be part of the approval hierarchy within the
protocol.

Secure all decommissioning and
migration processes07

11 | PwC | Understanding and implementing privacy by design in software development

08 Perform due diligence before implementing
third-party components/technologies

All third-party or open source components,
modules, APIs and libraries should be analysed for
vulnerabilities before being implemented in the code.

Periodic static code analysis and component analysis
should be performed to identify deprecated modules
which need to be updated or removed from the
software.

Further, communication between third-party
components via tokens should be secured and
data shared between them should comply with the
aforementioned controller-processor architecture.

12 | PwC | Understanding and implementing privacy by design in software development

Provide obfuscation or anonymisation
controls for admins

While designing software, the role of support
personnel should be critically considered. Support
teams such as infra teams, database admins, network
support and DevOps support should not be provided
access to user data, either from the front end or in the
data layer. Obfuscation and anonymisation controls
can be used for the log-ins provided to the support
teams. Even if a task requires the support personnel
to peek into the data, private information can be
masked on the UI.

Further, support personnel should have minimal
access to decryption keys. Only a few members
(managers and above) should be entrusted with the
responsibility of maintaining encryption codes and
other key elements on the production infrastructure.

Minimise data access to
support teams09

Keep developers’ and admins’ access to
environments separate

It is imperative to restrict production access to
developers. While the development team can provide
guidance to the support personnel for troubleshooting
bugs, they should not be allowed direct access to the
production environment. This measure ensures that
no single team member has ‘keys to all doors’ of a
software application.

Another way to secure production data is for the
support team to change the encryption keys,
environment variables, connection strings and other
relevant elements after going live with the software.
This mitigates privacy breaches via backdoors that
are typically used by internal aggressors.

13 | PwC | Understanding and implementing privacy by design in software development

Way forward

14 | PwC | Understanding and implementing Privacy by design in Software Development

PbD is not a new concept in itself, and leverages established principles. In essence, it brings in a mindset shift towards applying privacy considerations at each step of
software development. It can be used both as a preventive and detective control for data protection. From the software development perspective, it protects both the
developer and the organisation from potential liabilities as it helps organisations to design products by complying with privacy standards and regulations.
For any organisation to walk the path of PbD, the following steps can be of help:
•	 Assess your current PbD processes and operations: Do you have a PbD policy? Do you have a guideline document in your organisation? Do you have any guideline

documents/SOPs within your organisation that incorporate PbD principles?
•	 Develop privacy guidelines: These policies should be specifically created for application owners and developers – e.g. are there specific sets of guidelines for project

managers, application developers and data custodians?
•	 Know the data: This includes data processed and collected by the software product, tools and platform. Have you classified the data collected, including metadata? If

the software is off the shelf, have you assessed it from the PbD perspective? Do you know how much and what kind of derived data is produced by such software?
•	 Take help from privacy experts: Are the risk and harm that could arise out of this processing being assessed by a privacy expert who understands the law and is

trained in engineering software?
•	 Build accountability: Is privacy a default setting within the software business? Do you have a privacy governance structure and board involved? Are software

engineering privacy risks tracked and taken to closure?
•	 Create awareness and foster a privacy culture: How often are your teams trained on privacy? Are your engineers sensitised to the importance of user privilege? The

focus should be not just on compliance but also on the ‘individual’ and ‘doing the right thing’.

About PwC
At PwC, our purpose is to build trust in society and solve important problems. We’re a network of firms in 155 countries with over 284,000
people who are committed to delivering quality in assurance, advisory and tax services. PwC refers to the PwC network and/or one or more
of its member firms, each of which is a separate legal entity. Please see www.pwc.com/structure for further details.

Find out more about PwC India and tell us what matters to you by visiting us at www.pwc.in.

Contact us
Dhritimaan Shukla
Partner and Privacy Leader
PwC India
Mobile: +91 98990 38326
dhritimaan.shukla@pwc.com

Sonali Saraswat
Associate Director, Privacy
PwC India
Mobile: +91 96207 01515
sonali.saraswat@pwc.com

Karthik Addanki
Director, Forensics
PwC India
Mobile: +91 77020 99600
karthik.venkata@pwc.com

Acknowledgements
This article has been researched and authored
by Sonali Saraswat, Karthik Venkata and
Dhritimaan Shukla.

pwc.in
Data Classification: DC0 (Public)

In this document, PwC refers to PricewaterhouseCoopers Private Limited (a limited liability company in India having Corporate Identity Number or CIN : U74140WB1983PTC036093), which is
a member firm of PricewaterhouseCoopers International Limited (PwCIL), each member firm of which is a separate legal entity.

This document does not constitute professional advice. The information in this document has been obtained or derived from sources believed by PricewaterhouseCoopers Private Limited
(PwCPL) to be reliable but PwCPL does not represent that this information is accurate or complete. Any opinions or estimates contained in this document represent the judgment of PwCPL at
this time and are subject to change without notice. Readers of this publication are advised to seek their own professional advice before taking any course of action or decision, for which they
are entirely responsible, based on the contents of this publication. PwCPL neither accepts or assumes any responsibility or liability to any reader of this publication in respect of the information
contained within it or for any decisions readers may take or decide not to or fail to take.

© 2021 PricewaterhouseCoopers Private Limited. All rights reserved.

KS/March 2021-M&C9878

